Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum
Doklady Akademii Nauk, Tome 262 (1982) no. 6, pp. 1311-1315
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1982_262_6_a6,
author = {A. M. Magerramov},
title = {Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum},
journal = {Doklady Akademii Nauk},
pages = {1311--1315},
year = {1982},
volume = {262},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/}
}
TY - JOUR AU - A. M. Magerramov TI - Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum JO - Doklady Akademii Nauk PY - 1982 SP - 1311 EP - 1315 VL - 262 IS - 6 UR - http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/ LA - ru ID - DAN_1982_262_6_a6 ER -
%0 Journal Article %A A. M. Magerramov %T Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum %J Doklady Akademii Nauk %D 1982 %P 1311-1315 %V 262 %N 6 %U http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/ %G ru %F DAN_1982_262_6_a6
A. M. Magerramov. Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum. Doklady Akademii Nauk, Tome 262 (1982) no. 6, pp. 1311-1315. http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/