Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum
Doklady Akademii Nauk, Tome 262 (1982) no. 6, pp. 1311-1315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1982_262_6_a6,
     author = {A. M. Magerramov},
     title = {Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum},
     journal = {Doklady Akademii Nauk},
     pages = {1311--1315},
     year = {1982},
     volume = {262},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/}
}
TY  - JOUR
AU  - A. M. Magerramov
TI  - Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum
JO  - Doklady Akademii Nauk
PY  - 1982
SP  - 1311
EP  - 1315
VL  - 262
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/
LA  - ru
ID  - DAN_1982_262_6_a6
ER  - 
%0 Journal Article
%A A. M. Magerramov
%T Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum
%J Doklady Akademii Nauk
%D 1982
%P 1311-1315
%V 262
%N 6
%U http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/
%G ru
%F DAN_1982_262_6_a6
A. M. Magerramov. Decomposition of one differential operator according to its own functions, the principal part of which has multiple continuous spectrum. Doklady Akademii Nauk, Tome 262 (1982) no. 6, pp. 1311-1315. http://geodesic.mathdoc.fr/item/DAN_1982_262_6_a6/