Any topological group is a factor group of a zero-dimensional topological group
Doklady Akademii Nauk, Tome 258 (1981) no. 5, pp. 1037-1040.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1981_258_5_a1,
     author = {A. V. Arkhangel'skii},
     title = {Any topological group is a factor group of a zero-dimensional topological group},
     journal = {Doklady Akademii Nauk},
     pages = {1037--1040},
     publisher = {mathdoc},
     volume = {258},
     number = {5},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1981_258_5_a1/}
}
TY  - JOUR
AU  - A. V. Arkhangel'skii
TI  - Any topological group is a factor group of a zero-dimensional topological group
JO  - Doklady Akademii Nauk
PY  - 1981
SP  - 1037
EP  - 1040
VL  - 258
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1981_258_5_a1/
LA  - ru
ID  - DAN_1981_258_5_a1
ER  - 
%0 Journal Article
%A A. V. Arkhangel'skii
%T Any topological group is a factor group of a zero-dimensional topological group
%J Doklady Akademii Nauk
%D 1981
%P 1037-1040
%V 258
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1981_258_5_a1/
%G ru
%F DAN_1981_258_5_a1
A. V. Arkhangel'skii. Any topological group is a factor group of a zero-dimensional topological group. Doklady Akademii Nauk, Tome 258 (1981) no. 5, pp. 1037-1040. http://geodesic.mathdoc.fr/item/DAN_1981_258_5_a1/