An analogue of the Paley--Wiener theorem for the groups $U(n,1)$ and $SO_0(n,1)$
Doklady Akademii Nauk, Tome 257 (1981) no. 3, pp. 534-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1981_257_3_a3,
     author = {A. V. Lutsyuk},
     title = {An analogue of the {Paley--Wiener} theorem for the groups $U(n,1)$ and $SO_0(n,1)$},
     journal = {Doklady Akademii Nauk},
     pages = {534--538},
     publisher = {mathdoc},
     volume = {257},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1981_257_3_a3/}
}
TY  - JOUR
AU  - A. V. Lutsyuk
TI  - An analogue of the Paley--Wiener theorem for the groups $U(n,1)$ and $SO_0(n,1)$
JO  - Doklady Akademii Nauk
PY  - 1981
SP  - 534
EP  - 538
VL  - 257
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1981_257_3_a3/
LA  - ru
ID  - DAN_1981_257_3_a3
ER  - 
%0 Journal Article
%A A. V. Lutsyuk
%T An analogue of the Paley--Wiener theorem for the groups $U(n,1)$ and $SO_0(n,1)$
%J Doklady Akademii Nauk
%D 1981
%P 534-538
%V 257
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1981_257_3_a3/
%G ru
%F DAN_1981_257_3_a3
A. V. Lutsyuk. An analogue of the Paley--Wiener theorem for the groups $U(n,1)$ and $SO_0(n,1)$. Doklady Akademii Nauk, Tome 257 (1981) no. 3, pp. 534-538. http://geodesic.mathdoc.fr/item/DAN_1981_257_3_a3/