On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric
Doklady Akademii Nauk, Tome 255 (1980) no. 6, pp. 1325-1328
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1980_255_6_a11,
author = {S. I. Serdyukova},
title = {On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric},
journal = {Doklady Akademii Nauk},
pages = {1325--1328},
year = {1980},
volume = {255},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/}
}
TY - JOUR AU - S. I. Serdyukova TI - On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric JO - Doklady Akademii Nauk PY - 1980 SP - 1325 EP - 1328 VL - 255 IS - 6 UR - http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/ LA - ru ID - DAN_1980_255_6_a11 ER -
%0 Journal Article %A S. I. Serdyukova %T On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric %J Doklady Akademii Nauk %D 1980 %P 1325-1328 %V 255 %N 6 %U http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/ %G ru %F DAN_1980_255_6_a11
S. I. Serdyukova. On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric. Doklady Akademii Nauk, Tome 255 (1980) no. 6, pp. 1325-1328. http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/