On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric
Doklady Akademii Nauk, Tome 255 (1980) no. 6, pp. 1325-1328.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1980_255_6_a11,
     author = {S. I. Serdyukova},
     title = {On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric},
     journal = {Doklady Akademii Nauk},
     pages = {1325--1328},
     publisher = {mathdoc},
     volume = {255},
     number = {6},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/}
}
TY  - JOUR
AU  - S. I. Serdyukova
TI  - On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric
JO  - Doklady Akademii Nauk
PY  - 1980
SP  - 1325
EP  - 1328
VL  - 255
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/
LA  - ru
ID  - DAN_1980_255_6_a11
ER  - 
%0 Journal Article
%A S. I. Serdyukova
%T On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric
%J Doklady Akademii Nauk
%D 1980
%P 1325-1328
%V 255
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/
%G ru
%F DAN_1980_255_6_a11
S. I. Serdyukova. On the attainability of the minimum order of error in integrating hyperbolic equations by the finite-difference method in the uniform metric. Doklady Akademii Nauk, Tome 255 (1980) no. 6, pp. 1325-1328. http://geodesic.mathdoc.fr/item/DAN_1980_255_6_a11/