Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla(u^\sigma\nabla u)+u^\beta$
Doklady Akademii Nauk, Tome 252 (1980) no. 6, pp. 1362-1364.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1980_252_6_a18,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. P. Mikhailov and A. A. Samarskii},
     title = {Unbounded solutions of the {Cauchy} problem for the parabolic equation $u_t=\nabla(u^\sigma\nabla u)+u^\beta$},
     journal = {Doklady Akademii Nauk},
     pages = {1362--1364},
     publisher = {mathdoc},
     volume = {252},
     number = {6},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1980_252_6_a18/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. P. Kurdyumov
AU  - A. P. Mikhailov
AU  - A. A. Samarskii
TI  - Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla(u^\sigma\nabla u)+u^\beta$
JO  - Doklady Akademii Nauk
PY  - 1980
SP  - 1362
EP  - 1364
VL  - 252
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1980_252_6_a18/
LA  - ru
ID  - DAN_1980_252_6_a18
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. P. Kurdyumov
%A A. P. Mikhailov
%A A. A. Samarskii
%T Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla(u^\sigma\nabla u)+u^\beta$
%J Doklady Akademii Nauk
%D 1980
%P 1362-1364
%V 252
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1980_252_6_a18/
%G ru
%F DAN_1980_252_6_a18
V. A. Galaktionov; S. P. Kurdyumov; A. P. Mikhailov; A. A. Samarskii. Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla(u^\sigma\nabla u)+u^\beta$. Doklady Akademii Nauk, Tome 252 (1980) no. 6, pp. 1362-1364. http://geodesic.mathdoc.fr/item/DAN_1980_252_6_a18/