Finite-dimensional distributions of processes defined by stochastic differential equations, and the extrapolation of such processes
Doklady Akademii Nauk, Tome 251 (1980) no. 1, pp. 40-43
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1980_251_1_a10,
author = {V. S. Pugachev},
title = {Finite-dimensional distributions of processes defined by stochastic differential equations, and the extrapolation of such processes},
journal = {Doklady Akademii Nauk},
pages = {40--43},
year = {1980},
volume = {251},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1980_251_1_a10/}
}
TY - JOUR AU - V. S. Pugachev TI - Finite-dimensional distributions of processes defined by stochastic differential equations, and the extrapolation of such processes JO - Doklady Akademii Nauk PY - 1980 SP - 40 EP - 43 VL - 251 IS - 1 UR - http://geodesic.mathdoc.fr/item/DAN_1980_251_1_a10/ LA - ru ID - DAN_1980_251_1_a10 ER -
%0 Journal Article %A V. S. Pugachev %T Finite-dimensional distributions of processes defined by stochastic differential equations, and the extrapolation of such processes %J Doklady Akademii Nauk %D 1980 %P 40-43 %V 251 %N 1 %U http://geodesic.mathdoc.fr/item/DAN_1980_251_1_a10/ %G ru %F DAN_1980_251_1_a10
V. S. Pugachev. Finite-dimensional distributions of processes defined by stochastic differential equations, and the extrapolation of such processes. Doklady Akademii Nauk, Tome 251 (1980) no. 1, pp. 40-43. http://geodesic.mathdoc.fr/item/DAN_1980_251_1_a10/