On the approximate solution of spatial problems of the theory of elasticity for piecewise homogeneous bodies by the method of $R$-functions
Doklady Akademii Nauk, Tome 247 (1979) no. 4, pp. 818-821
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1979_247_4_a13,
author = {V. L. Rvachev and G. P. Borodai},
title = {On the approximate solution of spatial problems of the theory of elasticity for piecewise homogeneous bodies by the method of $R$-functions},
journal = {Doklady Akademii Nauk},
pages = {818--821},
year = {1979},
volume = {247},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1979_247_4_a13/}
}
TY - JOUR AU - V. L. Rvachev AU - G. P. Borodai TI - On the approximate solution of spatial problems of the theory of elasticity for piecewise homogeneous bodies by the method of $R$-functions JO - Doklady Akademii Nauk PY - 1979 SP - 818 EP - 821 VL - 247 IS - 4 UR - http://geodesic.mathdoc.fr/item/DAN_1979_247_4_a13/ LA - ru ID - DAN_1979_247_4_a13 ER -
%0 Journal Article %A V. L. Rvachev %A G. P. Borodai %T On the approximate solution of spatial problems of the theory of elasticity for piecewise homogeneous bodies by the method of $R$-functions %J Doklady Akademii Nauk %D 1979 %P 818-821 %V 247 %N 4 %U http://geodesic.mathdoc.fr/item/DAN_1979_247_4_a13/ %G ru %F DAN_1979_247_4_a13
V. L. Rvachev; G. P. Borodai. On the approximate solution of spatial problems of the theory of elasticity for piecewise homogeneous bodies by the method of $R$-functions. Doklady Akademii Nauk, Tome 247 (1979) no. 4, pp. 818-821. http://geodesic.mathdoc.fr/item/DAN_1979_247_4_a13/