Global solutions of Cauchy problems for the Liouville equation $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ in the case of singular initial data
Doklady Akademii Nauk, Tome 244 (1979) no. 4, pp. 873-876.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1979_244_4_a19,
     author = {A. K. Pogrebkov},
     title = {Global solutions of {Cauchy} problems for the {Liouville} equation $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ in the case of singular initial data},
     journal = {Doklady Akademii Nauk},
     pages = {873--876},
     publisher = {mathdoc},
     volume = {244},
     number = {4},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1979_244_4_a19/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Global solutions of Cauchy problems for the Liouville equation $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ in the case of singular initial data
JO  - Doklady Akademii Nauk
PY  - 1979
SP  - 873
EP  - 876
VL  - 244
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1979_244_4_a19/
LA  - ru
ID  - DAN_1979_244_4_a19
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Global solutions of Cauchy problems for the Liouville equation $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ in the case of singular initial data
%J Doklady Akademii Nauk
%D 1979
%P 873-876
%V 244
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1979_244_4_a19/
%G ru
%F DAN_1979_244_4_a19
A. K. Pogrebkov. Global solutions of Cauchy problems for the Liouville equation $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ in the case of singular initial data. Doklady Akademii Nauk, Tome 244 (1979) no. 4, pp. 873-876. http://geodesic.mathdoc.fr/item/DAN_1979_244_4_a19/