The Wiman–Valiron method for entire functions defined by Dirichlet series
Doklady Akademii Nauk, Tome 238 (1978) no. 6, pp. 1307-1309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1978_238_6_a9,
     author = {M. N. Sheremeta},
     title = {The {Wiman{\textendash}Valiron} method for entire functions defined by {Dirichlet} series},
     journal = {Doklady Akademii Nauk},
     pages = {1307--1309},
     year = {1978},
     volume = {238},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a9/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - The Wiman–Valiron method for entire functions defined by Dirichlet series
JO  - Doklady Akademii Nauk
PY  - 1978
SP  - 1307
EP  - 1309
VL  - 238
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a9/
LA  - ru
ID  - DAN_1978_238_6_a9
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T The Wiman–Valiron method for entire functions defined by Dirichlet series
%J Doklady Akademii Nauk
%D 1978
%P 1307-1309
%V 238
%N 6
%U http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a9/
%G ru
%F DAN_1978_238_6_a9
M. N. Sheremeta. The Wiman–Valiron method for entire functions defined by Dirichlet series. Doklady Akademii Nauk, Tome 238 (1978) no. 6, pp. 1307-1309. http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a9/