Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding groups of motions
Doklady Akademii Nauk, Tome 238 (1978) no. 6, pp. 1295-1298.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1978_238_6_a6,
     author = {G. I. Olshanskii},
     title = {Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding groups of motions},
     journal = {Doklady Akademii Nauk},
     pages = {1295--1298},
     publisher = {mathdoc},
     volume = {238},
     number = {6},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a6/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding groups of motions
JO  - Doklady Akademii Nauk
PY  - 1978
SP  - 1295
EP  - 1298
VL  - 238
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a6/
LA  - ru
ID  - DAN_1978_238_6_a6
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding groups of motions
%J Doklady Akademii Nauk
%D 1978
%P 1295-1298
%V 238
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a6/
%G ru
%F DAN_1978_238_6_a6
G. I. Olshanskii. Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding groups of motions. Doklady Akademii Nauk, Tome 238 (1978) no. 6, pp. 1295-1298. http://geodesic.mathdoc.fr/item/DAN_1978_238_6_a6/