Uniqueness theorems and analogues of Poisson's formula in the first octant for an equation of Helmholtz type with $n$ singular hyperplanes
Doklady Akademii Nauk, Tome 238 (1978) no. 4, pp. 804-807.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1978_238_4_a9,
     author = {N. Radjabov},
     title = {Uniqueness theorems and analogues of {Poisson's} formula in the first octant for an equation of {Helmholtz} type with $n$ singular hyperplanes},
     journal = {Doklady Akademii Nauk},
     pages = {804--807},
     publisher = {mathdoc},
     volume = {238},
     number = {4},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1978_238_4_a9/}
}
TY  - JOUR
AU  - N. Radjabov
TI  - Uniqueness theorems and analogues of Poisson's formula in the first octant for an equation of Helmholtz type with $n$ singular hyperplanes
JO  - Doklady Akademii Nauk
PY  - 1978
SP  - 804
EP  - 807
VL  - 238
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1978_238_4_a9/
LA  - ru
ID  - DAN_1978_238_4_a9
ER  - 
%0 Journal Article
%A N. Radjabov
%T Uniqueness theorems and analogues of Poisson's formula in the first octant for an equation of Helmholtz type with $n$ singular hyperplanes
%J Doklady Akademii Nauk
%D 1978
%P 804-807
%V 238
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1978_238_4_a9/
%G ru
%F DAN_1978_238_4_a9
N. Radjabov. Uniqueness theorems and analogues of Poisson's formula in the first octant for an equation of Helmholtz type with $n$ singular hyperplanes. Doklady Akademii Nauk, Tome 238 (1978) no. 4, pp. 804-807. http://geodesic.mathdoc.fr/item/DAN_1978_238_4_a9/