An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method
Doklady Akademii Nauk, Tome 235 (1977) no. 1, pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1977_235_1_a4,
     author = {D. E. Men'shov},
     title = {An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by {Abel's} method},
     journal = {Doklady Akademii Nauk},
     pages = {27--29},
     publisher = {mathdoc},
     volume = {235},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/}
}
TY  - JOUR
AU  - D. E. Men'shov
TI  - An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method
JO  - Doklady Akademii Nauk
PY  - 1977
SP  - 27
EP  - 29
VL  - 235
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/
LA  - ru
ID  - DAN_1977_235_1_a4
ER  - 
%0 Journal Article
%A D. E. Men'shov
%T An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method
%J Doklady Akademii Nauk
%D 1977
%P 27-29
%V 235
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/
%G ru
%F DAN_1977_235_1_a4
D. E. Men'shov. An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method. Doklady Akademii Nauk, Tome 235 (1977) no. 1, pp. 27-29. http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/