An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method
Doklady Akademii Nauk, Tome 235 (1977) no. 1, pp. 27-29
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1977_235_1_a4,
author = {D. E. Men'shov},
title = {An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by {Abel's} method},
journal = {Doklady Akademii Nauk},
pages = {27--29},
year = {1977},
volume = {235},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/}
}
TY - JOUR AU - D. E. Men'shov TI - An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method JO - Doklady Akademii Nauk PY - 1977 SP - 27 EP - 29 VL - 235 IS - 1 UR - http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/ LA - ru ID - DAN_1977_235_1_a4 ER -
%0 Journal Article %A D. E. Men'shov %T An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method %J Doklady Akademii Nauk %D 1977 %P 27-29 %V 235 %N 1 %U http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/ %G ru %F DAN_1977_235_1_a4
D. E. Men'shov. An interrelation between the convergence of subsequences of partial sums of a numerical series and its summability by Abel's method. Doklady Akademii Nauk, Tome 235 (1977) no. 1, pp. 27-29. http://geodesic.mathdoc.fr/item/DAN_1977_235_1_a4/