On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge
Doklady Akademii Nauk, Tome 233 (1977) no. 6, pp. 1053-1055.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1977_233_6_a10,
     author = {E. A. Timofeev},
     title = {On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge},
     journal = {Doklady Akademii Nauk},
     pages = {1053--1055},
     publisher = {mathdoc},
     volume = {233},
     number = {6},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1977_233_6_a10/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge
JO  - Doklady Akademii Nauk
PY  - 1977
SP  - 1053
EP  - 1055
VL  - 233
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1977_233_6_a10/
LA  - ru
ID  - DAN_1977_233_6_a10
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge
%J Doklady Akademii Nauk
%D 1977
%P 1053-1055
%V 233
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1977_233_6_a10/
%G ru
%F DAN_1977_233_6_a10
E. A. Timofeev. On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge. Doklady Akademii Nauk, Tome 233 (1977) no. 6, pp. 1053-1055. http://geodesic.mathdoc.fr/item/DAN_1977_233_6_a10/