The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompact
Doklady Akademii Nauk, Tome 228 (1976) no. 6, pp. 1302-1305.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1976_228_6_a10,
     author = {L. B. Shapiro},
     title = {The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompact},
     journal = {Doklady Akademii Nauk},
     pages = {1302--1305},
     publisher = {mathdoc},
     volume = {228},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1976_228_6_a10/}
}
TY  - JOUR
AU  - L. B. Shapiro
TI  - The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompact
JO  - Doklady Akademii Nauk
PY  - 1976
SP  - 1302
EP  - 1305
VL  - 228
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1976_228_6_a10/
LA  - ru
ID  - DAN_1976_228_6_a10
ER  - 
%0 Journal Article
%A L. B. Shapiro
%T The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompact
%J Doklady Akademii Nauk
%D 1976
%P 1302-1305
%V 228
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1976_228_6_a10/
%G ru
%F DAN_1976_228_6_a10
L. B. Shapiro. The space of closed subsets of $D^{\aleph_2}$ is not a dyadic bicompact. Doklady Akademii Nauk, Tome 228 (1976) no. 6, pp. 1302-1305. http://geodesic.mathdoc.fr/item/DAN_1976_228_6_a10/