A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution
Doklady Akademii Nauk, Tome 228 (1976) no. 3, pp. 533-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1976_228_3_a3,
     author = {V. V. Laricheva},
     title = {A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution},
     journal = {Doklady Akademii Nauk},
     pages = {533--536},
     publisher = {mathdoc},
     volume = {228},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/}
}
TY  - JOUR
AU  - V. V. Laricheva
TI  - A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution
JO  - Doklady Akademii Nauk
PY  - 1976
SP  - 533
EP  - 536
VL  - 228
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/
LA  - ru
ID  - DAN_1976_228_3_a3
ER  - 
%0 Journal Article
%A V. V. Laricheva
%T A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution
%J Doklady Akademii Nauk
%D 1976
%P 533-536
%V 228
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/
%G ru
%F DAN_1976_228_3_a3
V. V. Laricheva. A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution. Doklady Akademii Nauk, Tome 228 (1976) no. 3, pp. 533-536. http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/