A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution
Doklady Akademii Nauk, Tome 228 (1976) no. 3, pp. 533-536
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1976_228_3_a3,
author = {V. V. Laricheva},
title = {A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution},
journal = {Doklady Akademii Nauk},
pages = {533--536},
year = {1976},
volume = {228},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/}
}
TY - JOUR AU - V. V. Laricheva TI - A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution JO - Doklady Akademii Nauk PY - 1976 SP - 533 EP - 536 VL - 228 IS - 3 UR - http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/ LA - ru ID - DAN_1976_228_3_a3 ER -
%0 Journal Article %A V. V. Laricheva %T A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution %J Doklady Akademii Nauk %D 1976 %P 533-536 %V 228 %N 3 %U http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/ %G ru %F DAN_1976_228_3_a3
V. V. Laricheva. A generalization of perturbation theory for a nonlinear system that loses a small parameter in a subset of the range of the solution. Doklady Akademii Nauk, Tome 228 (1976) no. 3, pp. 533-536. http://geodesic.mathdoc.fr/item/DAN_1976_228_3_a3/