Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$
Doklady Akademii Nauk, Tome 219 (1974) no. 3, pp. 521-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1974_219_3_a0,
     author = {I. I. Bavrin},
     title = {Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$},
     journal = {Doklady Akademii Nauk},
     pages = {521--523},
     publisher = {mathdoc},
     volume = {219},
     number = {3},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1974_219_3_a0/}
}
TY  - JOUR
AU  - I. I. Bavrin
TI  - Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$
JO  - Doklady Akademii Nauk
PY  - 1974
SP  - 521
EP  - 523
VL  - 219
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1974_219_3_a0/
LA  - ru
ID  - DAN_1974_219_3_a0
ER  - 
%0 Journal Article
%A I. I. Bavrin
%T Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$
%J Doklady Akademii Nauk
%D 1974
%P 521-523
%V 219
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1974_219_3_a0/
%G ru
%F DAN_1974_219_3_a0
I. I. Bavrin. Temljakov's integral formula with $n$-dimensional defining manifold in the space $C^n$. Doklady Akademii Nauk, Tome 219 (1974) no. 3, pp. 521-523. http://geodesic.mathdoc.fr/item/DAN_1974_219_3_a0/