The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin
Doklady Akademii Nauk, Tome 218 (1974) no. 5, pp. 1001-1004 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1974_218_5_a0,
     author = {A. D. Gadzhiev},
     title = {The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of {P.} {P.~Korovkin}},
     journal = {Doklady Akademii Nauk},
     pages = {1001--1004},
     year = {1974},
     volume = {218},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/}
}
TY  - JOUR
AU  - A. D. Gadzhiev
TI  - The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin
JO  - Doklady Akademii Nauk
PY  - 1974
SP  - 1001
EP  - 1004
VL  - 218
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/
LA  - ru
ID  - DAN_1974_218_5_a0
ER  - 
%0 Journal Article
%A A. D. Gadzhiev
%T The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin
%J Doklady Akademii Nauk
%D 1974
%P 1001-1004
%V 218
%N 5
%U http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/
%G ru
%F DAN_1974_218_5_a0
A. D. Gadzhiev. The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin. Doklady Akademii Nauk, Tome 218 (1974) no. 5, pp. 1001-1004. http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/