The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin
Doklady Akademii Nauk, Tome 218 (1974) no. 5, pp. 1001-1004
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1974_218_5_a0,
author = {A. D. Gadzhiev},
title = {The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of {P.} {P.~Korovkin}},
journal = {Doklady Akademii Nauk},
pages = {1001--1004},
year = {1974},
volume = {218},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/}
}
TY - JOUR AU - A. D. Gadzhiev TI - The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin JO - Doklady Akademii Nauk PY - 1974 SP - 1001 EP - 1004 VL - 218 IS - 5 UR - http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/ LA - ru ID - DAN_1974_218_5_a0 ER -
%0 Journal Article %A A. D. Gadzhiev %T The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin %J Doklady Akademii Nauk %D 1974 %P 1001-1004 %V 218 %N 5 %U http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/ %G ru %F DAN_1974_218_5_a0
A. D. Gadzhiev. The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin. Doklady Akademii Nauk, Tome 218 (1974) no. 5, pp. 1001-1004. http://geodesic.mathdoc.fr/item/DAN_1974_218_5_a0/