On the approximation of functions in $C^r(\Omega)$ where $\Omega$ is an arbitrary open set
Doklady Akademii Nauk, Tome 202 (1972) no. 1, pp. 16-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1972_202_1_a2,
     author = {V. I. Burenkov},
     title = {On the approximation of functions in $C^r(\Omega)$ where $\Omega$ is an arbitrary open set},
     journal = {Doklady Akademii Nauk},
     pages = {16--18},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1972_202_1_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - On the approximation of functions in $C^r(\Omega)$ where $\Omega$ is an arbitrary open set
JO  - Doklady Akademii Nauk
PY  - 1972
SP  - 16
EP  - 18
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1972_202_1_a2/
LA  - ru
ID  - DAN_1972_202_1_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T On the approximation of functions in $C^r(\Omega)$ where $\Omega$ is an arbitrary open set
%J Doklady Akademii Nauk
%D 1972
%P 16-18
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1972_202_1_a2/
%G ru
%F DAN_1972_202_1_a2
V. I. Burenkov. On the approximation of functions in $C^r(\Omega)$ where $\Omega$ is an arbitrary open set. Doklady Akademii Nauk, Tome 202 (1972) no. 1, pp. 16-18. http://geodesic.mathdoc.fr/item/DAN_1972_202_1_a2/