On the theory of dually normalizable $m$-dimensional surfaces $V_m$ in $E_n$
Doklady Akademii Nauk, Tome 196 (1971) no. 3, pp. 538-540.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1971_196_3_a12,
     author = {A. V. Chakmazyan},
     title = {On the theory of dually normalizable $m$-dimensional surfaces $V_m$ in $E_n$},
     journal = {Doklady Akademii Nauk},
     pages = {538--540},
     publisher = {mathdoc},
     volume = {196},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1971_196_3_a12/}
}
TY  - JOUR
AU  - A. V. Chakmazyan
TI  - On the theory of dually normalizable $m$-dimensional surfaces $V_m$ in $E_n$
JO  - Doklady Akademii Nauk
PY  - 1971
SP  - 538
EP  - 540
VL  - 196
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1971_196_3_a12/
LA  - ru
ID  - DAN_1971_196_3_a12
ER  - 
%0 Journal Article
%A A. V. Chakmazyan
%T On the theory of dually normalizable $m$-dimensional surfaces $V_m$ in $E_n$
%J Doklady Akademii Nauk
%D 1971
%P 538-540
%V 196
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1971_196_3_a12/
%G ru
%F DAN_1971_196_3_a12
A. V. Chakmazyan. On the theory of dually normalizable $m$-dimensional surfaces $V_m$ in $E_n$. Doklady Akademii Nauk, Tome 196 (1971) no. 3, pp. 538-540. http://geodesic.mathdoc.fr/item/DAN_1971_196_3_a12/