The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,
Doklady Akademii Nauk, Tome 195 (1970) no. 6, pp. 1282-1285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1970_195_6_a7,
     author = {N. Hadzhiivanov},
     title = {The {Hilbert} parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,},
     journal = {Doklady Akademii Nauk},
     pages = {1282--1285},
     year = {1970},
     volume = {195},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/}
}
TY  - JOUR
AU  - N. Hadzhiivanov
TI  - The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,
JO  - Doklady Akademii Nauk
PY  - 1970
SP  - 1282
EP  - 1285
VL  - 195
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/
LA  - ru
ID  - DAN_1970_195_6_a7
ER  - 
%0 Journal Article
%A N. Hadzhiivanov
%T The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,
%J Doklady Akademii Nauk
%D 1970
%P 1282-1285
%V 195
%N 6
%U http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/
%G ru
%F DAN_1970_195_6_a7
N. Hadzhiivanov. The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,. Doklady Akademii Nauk, Tome 195 (1970) no. 6, pp. 1282-1285. http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/