The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,
Doklady Akademii Nauk, Tome 195 (1970) no. 6, pp. 1282-1285
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1970_195_6_a7,
author = {N. Hadzhiivanov},
title = {The {Hilbert} parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,},
journal = {Doklady Akademii Nauk},
pages = {1282--1285},
year = {1970},
volume = {195},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/}
}
TY - JOUR AU - N. Hadzhiivanov TI - The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself, JO - Doklady Akademii Nauk PY - 1970 SP - 1282 EP - 1285 VL - 195 IS - 6 UR - http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/ LA - ru ID - DAN_1970_195_6_a7 ER -
N. Hadzhiivanov. The Hilbert parallelepiped does not decompose into a countable union of closed subsets, diferent from itself,. Doklady Akademii Nauk, Tome 195 (1970) no. 6, pp. 1282-1285. http://geodesic.mathdoc.fr/item/DAN_1970_195_6_a7/