From the existence of a nonmeasurable set of type $A_2$ there follows the existence of an uncountable set that contains
Doklady Akademii Nauk, Tome 195 (1970) no. 3, pp. 548-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1970_195_3_a8,
     author = {V. A. Lyubetskii},
     title = {From the existence of a nonmeasurable set of type $A_2$  there follows the existence of an uncountable set that contains},
     journal = {Doklady Akademii Nauk},
     pages = {548--550},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/}
}
TY  - JOUR
AU  - V. A. Lyubetskii
TI  - From the existence of a nonmeasurable set of type $A_2$  there follows the existence of an uncountable set that contains
JO  - Doklady Akademii Nauk
PY  - 1970
SP  - 548
EP  - 550
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/
LA  - ru
ID  - DAN_1970_195_3_a8
ER  - 
%0 Journal Article
%A V. A. Lyubetskii
%T From the existence of a nonmeasurable set of type $A_2$  there follows the existence of an uncountable set that contains
%J Doklady Akademii Nauk
%D 1970
%P 548-550
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/
%G ru
%F DAN_1970_195_3_a8
V. A. Lyubetskii. From the existence of a nonmeasurable set of type $A_2$  there follows the existence of an uncountable set that contains. Doklady Akademii Nauk, Tome 195 (1970) no. 3, pp. 548-550. http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/