From the existence of a nonmeasurable set of type $A_2$ there follows the existence of an uncountable set that contains
Doklady Akademii Nauk, Tome 195 (1970) no. 3, pp. 548-550
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1970_195_3_a8,
author = {V. A. Lyubetskii},
title = {From the existence of a nonmeasurable set of type $A_2$ there follows the existence of an uncountable set that contains},
journal = {Doklady Akademii Nauk},
pages = {548--550},
year = {1970},
volume = {195},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/}
}
TY - JOUR AU - V. A. Lyubetskii TI - From the existence of a nonmeasurable set of type $A_2$ there follows the existence of an uncountable set that contains JO - Doklady Akademii Nauk PY - 1970 SP - 548 EP - 550 VL - 195 IS - 3 UR - http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/ LA - ru ID - DAN_1970_195_3_a8 ER -
V. A. Lyubetskii. From the existence of a nonmeasurable set of type $A_2$ there follows the existence of an uncountable set that contains. Doklady Akademii Nauk, Tome 195 (1970) no. 3, pp. 548-550. http://geodesic.mathdoc.fr/item/DAN_1970_195_3_a8/