Absolute convergence properties of multidimensional Fourier series from the point of view of the geometry of the weak discontinuities of the functions being expanded
Doklady Akademii Nauk, Tome 191 (1970) no. 2, pp. 275-278
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1970_191_2_a4,
author = {V. P. Maslov},
title = {Absolute convergence properties of multidimensional {Fourier} series from the point of view of the geometry of the weak discontinuities of the functions being expanded},
journal = {Doklady Akademii Nauk},
pages = {275--278},
year = {1970},
volume = {191},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1970_191_2_a4/}
}
TY - JOUR AU - V. P. Maslov TI - Absolute convergence properties of multidimensional Fourier series from the point of view of the geometry of the weak discontinuities of the functions being expanded JO - Doklady Akademii Nauk PY - 1970 SP - 275 EP - 278 VL - 191 IS - 2 UR - http://geodesic.mathdoc.fr/item/DAN_1970_191_2_a4/ LA - ru ID - DAN_1970_191_2_a4 ER -
%0 Journal Article %A V. P. Maslov %T Absolute convergence properties of multidimensional Fourier series from the point of view of the geometry of the weak discontinuities of the functions being expanded %J Doklady Akademii Nauk %D 1970 %P 275-278 %V 191 %N 2 %U http://geodesic.mathdoc.fr/item/DAN_1970_191_2_a4/ %G ru %F DAN_1970_191_2_a4
V. P. Maslov. Absolute convergence properties of multidimensional Fourier series from the point of view of the geometry of the weak discontinuities of the functions being expanded. Doklady Akademii Nauk, Tome 191 (1970) no. 2, pp. 275-278. http://geodesic.mathdoc.fr/item/DAN_1970_191_2_a4/