The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
Doklady Akademii Nauk, Tome 189 (1969) no. 6, pp. 1177-1180.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1969_189_6_a3,
     author = {A. Ya. Dubovitskii and A. A. Milyutin},
     title = {The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type},
     journal = {Doklady Akademii Nauk},
     pages = {1177--1180},
     publisher = {mathdoc},
     volume = {189},
     number = {6},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/}
}
TY  - JOUR
AU  - A. Ya. Dubovitskii
AU  - A. A. Milyutin
TI  - The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
JO  - Doklady Akademii Nauk
PY  - 1969
SP  - 1177
EP  - 1180
VL  - 189
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/
LA  - ru
ID  - DAN_1969_189_6_a3
ER  - 
%0 Journal Article
%A A. Ya. Dubovitskii
%A A. A. Milyutin
%T The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
%J Doklady Akademii Nauk
%D 1969
%P 1177-1180
%V 189
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/
%G ru
%F DAN_1969_189_6_a3
A. Ya. Dubovitskii; A. A. Milyutin. The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type. Doklady Akademii Nauk, Tome 189 (1969) no. 6, pp. 1177-1180. http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/