The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
Doklady Akademii Nauk, Tome 189 (1969) no. 6, pp. 1177-1180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1969_189_6_a3,
     author = {A. Ya. Dubovitskii and A. A. Milyutin},
     title = {The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type},
     journal = {Doklady Akademii Nauk},
     pages = {1177--1180},
     year = {1969},
     volume = {189},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/}
}
TY  - JOUR
AU  - A. Ya. Dubovitskii
AU  - A. A. Milyutin
TI  - The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
JO  - Doklady Akademii Nauk
PY  - 1969
SP  - 1177
EP  - 1180
VL  - 189
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/
LA  - ru
ID  - DAN_1969_189_6_a3
ER  - 
%0 Journal Article
%A A. Ya. Dubovitskii
%A A. A. Milyutin
%T The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type
%J Doklady Akademii Nauk
%D 1969
%P 1177-1180
%V 189
%N 6
%U http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/
%G ru
%F DAN_1969_189_6_a3
A. Ya. Dubovitskii; A. A. Milyutin. The maximum principle, in a class of variations that are small in absolute value, for optimal control problems with mixed constraints of equality and inequality type. Doklady Akademii Nauk, Tome 189 (1969) no. 6, pp. 1177-1180. http://geodesic.mathdoc.fr/item/DAN_1969_189_6_a3/