A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
Doklady Akademii Nauk, Tome 187 (1969) no. 3, pp. 490-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1969_187_3_a1,
     author = {A. V. Arkhangel'skii},
     title = {A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces},
     journal = {Doklady Akademii Nauk},
     pages = {490--493},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/}
}
TY  - JOUR
AU  - A. V. Arkhangel'skii
TI  - A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
JO  - Doklady Akademii Nauk
PY  - 1969
SP  - 490
EP  - 493
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/
LA  - ru
ID  - DAN_1969_187_3_a1
ER  - 
%0 Journal Article
%A A. V. Arkhangel'skii
%T A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
%J Doklady Akademii Nauk
%D 1969
%P 490-493
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/
%G ru
%F DAN_1969_187_3_a1
A. V. Arkhangel'skii. A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces. Doklady Akademii Nauk, Tome 187 (1969) no. 3, pp. 490-493. http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/