Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1969_187_3_a1, author = {A. V. Arkhangel'skii}, title = {A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces}, journal = {Doklady Akademii Nauk}, pages = {490--493}, publisher = {mathdoc}, volume = {187}, number = {3}, year = {1969}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/} }
TY - JOUR AU - A. V. Arkhangel'skii TI - A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces JO - Doklady Akademii Nauk PY - 1969 SP - 490 EP - 493 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/ LA - ru ID - DAN_1969_187_3_a1 ER -
%0 Journal Article %A A. V. Arkhangel'skii %T A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces %J Doklady Akademii Nauk %D 1969 %P 490-493 %V 187 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/ %G ru %F DAN_1969_187_3_a1
A. V. Arkhangel'skii. A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces. Doklady Akademii Nauk, Tome 187 (1969) no. 3, pp. 490-493. http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/