A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
Doklady Akademii Nauk, Tome 187 (1969) no. 3, pp. 490-493
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1969_187_3_a1,
author = {A. V. Arkhangel'skii},
title = {A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces},
journal = {Doklady Akademii Nauk},
pages = {490--493},
year = {1969},
volume = {187},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/}
}
TY - JOUR
AU - A. V. Arkhangel'skii
TI - A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
JO - Doklady Akademii Nauk
PY - 1969
SP - 490
EP - 493
VL - 187
IS - 3
UR - http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/
LA - ru
ID - DAN_1969_187_3_a1
ER -
%0 Journal Article
%A A. V. Arkhangel'skii
%T A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces
%J Doklady Akademii Nauk
%D 1969
%P 490-493
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/
%G ru
%F DAN_1969_187_3_a1
A. V. Arkhangel'skii. A criterion for $n$-dimensionality and an approach to a proof of the equality $\dim=\operatorname{Ind}$ for metric spaces. Doklady Akademii Nauk, Tome 187 (1969) no. 3, pp. 490-493. http://geodesic.mathdoc.fr/item/DAN_1969_187_3_a1/