The distribution of class numbers $h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
Doklady Akademii Nauk, Tome 179 (1968) no. 5, pp. 1050-1053
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1968_179_5_a10,
author = {V. G. Lemmlein},
title = {The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$},
journal = {Doklady Akademii Nauk},
pages = {1050--1053},
year = {1968},
volume = {179},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/}
}
TY - JOUR
AU - V. G. Lemmlein
TI - The distribution of class numbers $h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
JO - Doklady Akademii Nauk
PY - 1968
SP - 1050
EP - 1053
VL - 179
IS - 5
UR - http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/
LA - ru
ID - DAN_1968_179_5_a10
ER -
%0 Journal Article
%A V. G. Lemmlein
%T The distribution of class numbers $h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
%J Doklady Akademii Nauk
%D 1968
%P 1050-1053
%V 179
%N 5
%U http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/
%G ru
%F DAN_1968_179_5_a10
V. G. Lemmlein. The distribution of class numbers $h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$. Doklady Akademii Nauk, Tome 179 (1968) no. 5, pp. 1050-1053. http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/