The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
Doklady Akademii Nauk, Tome 179 (1968) no. 5, pp. 1050-1053.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1968_179_5_a10,
     author = {V. G. Lemmlein},
     title = {The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$},
     journal = {Doklady Akademii Nauk},
     pages = {1050--1053},
     publisher = {mathdoc},
     volume = {179},
     number = {5},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/}
}
TY  - JOUR
AU  - V. G. Lemmlein
TI  - The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
JO  - Doklady Akademii Nauk
PY  - 1968
SP  - 1050
EP  - 1053
VL  - 179
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/
LA  - ru
ID  - DAN_1968_179_5_a10
ER  - 
%0 Journal Article
%A V. G. Lemmlein
%T The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$
%J Doklady Akademii Nauk
%D 1968
%P 1050-1053
%V 179
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/
%G ru
%F DAN_1968_179_5_a10
V. G. Lemmlein. The distribution of class numbers~$h$ of real quadratic fields $K(\sqrt{p})$ with prime discriminant $p\equiv1(\operatorname{mod}4)$ over residue classes $\{4k+1\}$ and $\{4k+3\}$. Doklady Akademii Nauk, Tome 179 (1968) no. 5, pp. 1050-1053. http://geodesic.mathdoc.fr/item/DAN_1968_179_5_a10/