The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions
Doklady Akademii Nauk, Tome 176 (1967) no. 6, pp. 1225-1228
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1967_176_6_a3,
author = {B. A. Vostretsov and A. V. Ignat'eva},
title = {The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions},
journal = {Doklady Akademii Nauk},
pages = {1225--1228},
year = {1967},
volume = {176},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/}
}
TY - JOUR AU - B. A. Vostretsov AU - A. V. Ignat'eva TI - The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions JO - Doklady Akademii Nauk PY - 1967 SP - 1225 EP - 1228 VL - 176 IS - 6 UR - http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/ LA - ru ID - DAN_1967_176_6_a3 ER -
%0 Journal Article %A B. A. Vostretsov %A A. V. Ignat'eva %T The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions %J Doklady Akademii Nauk %D 1967 %P 1225-1228 %V 176 %N 6 %U http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/ %G ru %F DAN_1967_176_6_a3
B. A. Vostretsov; A. V. Ignat'eva. The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions. Doklady Akademii Nauk, Tome 176 (1967) no. 6, pp. 1225-1228. http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/