The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions
Doklady Akademii Nauk, Tome 176 (1967) no. 6, pp. 1225-1228.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1967_176_6_a3,
     author = {B. A. Vostretsov and A. V. Ignat'eva},
     title = {The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions},
     journal = {Doklady Akademii Nauk},
     pages = {1225--1228},
     publisher = {mathdoc},
     volume = {176},
     number = {6},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/}
}
TY  - JOUR
AU  - B. A. Vostretsov
AU  - A. V. Ignat'eva
TI  - The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions
JO  - Doklady Akademii Nauk
PY  - 1967
SP  - 1225
EP  - 1228
VL  - 176
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/
LA  - ru
ID  - DAN_1967_176_6_a3
ER  - 
%0 Journal Article
%A B. A. Vostretsov
%A A. V. Ignat'eva
%T The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions
%J Doklady Akademii Nauk
%D 1967
%P 1225-1228
%V 176
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/
%G ru
%F DAN_1967_176_6_a3
B. A. Vostretsov; A. V. Ignat'eva. The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions. Doklady Akademii Nauk, Tome 176 (1967) no. 6, pp. 1225-1228. http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/