Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1967_176_6_a3, author = {B. A. Vostretsov and A. V. Ignat'eva}, title = {The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions}, journal = {Doklady Akademii Nauk}, pages = {1225--1228}, publisher = {mathdoc}, volume = {176}, number = {6}, year = {1967}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/} }
TY - JOUR AU - B. A. Vostretsov AU - A. V. Ignat'eva TI - The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions JO - Doklady Akademii Nauk PY - 1967 SP - 1225 EP - 1228 VL - 176 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/ LA - ru ID - DAN_1967_176_6_a3 ER -
%0 Journal Article %A B. A. Vostretsov %A A. V. Ignat'eva %T The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions %J Doklady Akademii Nauk %D 1967 %P 1225-1228 %V 176 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/ %G ru %F DAN_1967_176_6_a3
B. A. Vostretsov; A. V. Ignat'eva. The existence in the $L_p$ metric of the best approximation of functions by sums of a finite number of plane waves of given directions. Doklady Akademii Nauk, Tome 176 (1967) no. 6, pp. 1225-1228. http://geodesic.mathdoc.fr/item/DAN_1967_176_6_a3/