Boundedness in $L_p$ of a singular operator with Cauchy kernel along a curve of bounded rotation
Doklady Akademii Nauk, Tome 174 (1967) no. 3, pp. 514-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1967_174_3_a1,
     author = {I. I. Danilyuk and V. Shelepov},
     title = {Boundedness in $L_p$ of a singular operator with {Cauchy} kernel along a curve of bounded rotation},
     journal = {Doklady Akademii Nauk},
     pages = {514--517},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1967_174_3_a1/}
}
TY  - JOUR
AU  - I. I. Danilyuk
AU  - V. Shelepov
TI  - Boundedness in $L_p$ of a singular operator with Cauchy kernel along a curve of bounded rotation
JO  - Doklady Akademii Nauk
PY  - 1967
SP  - 514
EP  - 517
VL  - 174
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1967_174_3_a1/
LA  - ru
ID  - DAN_1967_174_3_a1
ER  - 
%0 Journal Article
%A I. I. Danilyuk
%A V. Shelepov
%T Boundedness in $L_p$ of a singular operator with Cauchy kernel along a curve of bounded rotation
%J Doklady Akademii Nauk
%D 1967
%P 514-517
%V 174
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1967_174_3_a1/
%G ru
%F DAN_1967_174_3_a1
I. I. Danilyuk; V. Shelepov. Boundedness in $L_p$ of a singular operator with Cauchy kernel along a curve of bounded rotation. Doklady Akademii Nauk, Tome 174 (1967) no. 3, pp. 514-517. http://geodesic.mathdoc.fr/item/DAN_1967_174_3_a1/