The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
Doklady Akademii Nauk, Tome 164 (1965) no. 1, pp. 51-53
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1965_164_1_a11,
author = {R. A. Raitsin},
title = {The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric},
journal = {Doklady Akademii Nauk},
pages = {51--53},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {1965},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/}
}
TY - JOUR
AU - R. A. Raitsin
TI - The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
JO - Doklady Akademii Nauk
PY - 1965
SP - 51
EP - 53
VL - 164
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/
LA - ru
ID - DAN_1965_164_1_a11
ER -
%0 Journal Article
%A R. A. Raitsin
%T The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
%J Doklady Akademii Nauk
%D 1965
%P 51-53
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/
%G ru
%F DAN_1965_164_1_a11
R. A. Raitsin. The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric. Doklady Akademii Nauk, Tome 164 (1965) no. 1, pp. 51-53. http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/