The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
Doklady Akademii Nauk, Tome 164 (1965) no. 1, pp. 51-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1965_164_1_a11,
     author = {R. A. Raitsin},
     title = {The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric},
     journal = {Doklady Akademii Nauk},
     pages = {51--53},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/}
}
TY  - JOUR
AU  - R. A. Raitsin
TI  - The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
JO  - Doklady Akademii Nauk
PY  - 1965
SP  - 51
EP  - 53
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/
LA  - ru
ID  - DAN_1965_164_1_a11
ER  - 
%0 Journal Article
%A R. A. Raitsin
%T The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric
%J Doklady Akademii Nauk
%D 1965
%P 51-53
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/
%G ru
%F DAN_1965_164_1_a11
R. A. Raitsin. The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric. Doklady Akademii Nauk, Tome 164 (1965) no. 1, pp. 51-53. http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/