Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1965_164_1_a11, author = {R. A. Raitsin}, title = {The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric}, journal = {Doklady Akademii Nauk}, pages = {51--53}, publisher = {mathdoc}, volume = {164}, number = {1}, year = {1965}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/} }
TY - JOUR AU - R. A. Raitsin TI - The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric JO - Doklady Akademii Nauk PY - 1965 SP - 51 EP - 53 VL - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/ LA - ru ID - DAN_1965_164_1_a11 ER -
%0 Journal Article %A R. A. Raitsin %T The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric %J Doklady Akademii Nauk %D 1965 %P 51-53 %V 164 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/ %G ru %F DAN_1965_164_1_a11
R. A. Raitsin. The best approximation of the $(x-c )^{r-1}|x-c|^{1+\alpha}$ functions by polynomials in the $L_q(-1,1)$ ($q\ge1$) space metric. Doklady Akademii Nauk, Tome 164 (1965) no. 1, pp. 51-53. http://geodesic.mathdoc.fr/item/DAN_1965_164_1_a11/