Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable
Doklady Akademii Nauk, Tome 163 (1965) no. 6, pp. 1338-1341.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1965_163_6_a10,
     author = {R. D. Bachelis and V. G. Melamed},
     title = {Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable},
     journal = {Doklady Akademii Nauk},
     pages = {1338--1341},
     publisher = {mathdoc},
     volume = {163},
     number = {6},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/}
}
TY  - JOUR
AU  - R. D. Bachelis
AU  - V. G. Melamed
TI  - Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable
JO  - Doklady Akademii Nauk
PY  - 1965
SP  - 1338
EP  - 1341
VL  - 163
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/
LA  - ru
ID  - DAN_1965_163_6_a10
ER  - 
%0 Journal Article
%A R. D. Bachelis
%A V. G. Melamed
%T Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable
%J Doklady Akademii Nauk
%D 1965
%P 1338-1341
%V 163
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/
%G ru
%F DAN_1965_163_6_a10
R. D. Bachelis; V. G. Melamed. Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable. Doklady Akademii Nauk, Tome 163 (1965) no. 6, pp. 1338-1341. http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/