Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1965_163_6_a10, author = {R. D. Bachelis and V. G. Melamed}, title = {Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable}, journal = {Doklady Akademii Nauk}, pages = {1338--1341}, publisher = {mathdoc}, volume = {163}, number = {6}, year = {1965}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/} }
TY - JOUR AU - R. D. Bachelis AU - V. G. Melamed TI - Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable JO - Doklady Akademii Nauk PY - 1965 SP - 1338 EP - 1341 VL - 163 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/ LA - ru ID - DAN_1965_163_6_a10 ER -
%0 Journal Article %A R. D. Bachelis %A V. G. Melamed %T Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable %J Doklady Akademii Nauk %D 1965 %P 1338-1341 %V 163 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/ %G ru %F DAN_1965_163_6_a10
R. D. Bachelis; V. G. Melamed. Non-uniqueness of stationary solutions to a system of equations in the theory of burning when the rate constant and the coefficients of heat conduction and diffusion are piecewise invariable. Doklady Akademii Nauk, Tome 163 (1965) no. 6, pp. 1338-1341. http://geodesic.mathdoc.fr/item/DAN_1965_163_6_a10/