Lebesgue measure of subsets of Euclidean space as the maximum variation of the distance function on a closed set
Doklady Akademii Nauk, Tome 160 (1965) no. 5, pp. 1004-1006
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1965_160_5_a6,
author = {B. P. Kufarev and N. G. Nikulina},
title = {Lebesgue measure of subsets of {Euclidean} space as the maximum variation of the distance function on a closed set},
journal = {Doklady Akademii Nauk},
pages = {1004--1006},
year = {1965},
volume = {160},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1965_160_5_a6/}
}
TY - JOUR AU - B. P. Kufarev AU - N. G. Nikulina TI - Lebesgue measure of subsets of Euclidean space as the maximum variation of the distance function on a closed set JO - Doklady Akademii Nauk PY - 1965 SP - 1004 EP - 1006 VL - 160 IS - 5 UR - http://geodesic.mathdoc.fr/item/DAN_1965_160_5_a6/ LA - ru ID - DAN_1965_160_5_a6 ER -
%0 Journal Article %A B. P. Kufarev %A N. G. Nikulina %T Lebesgue measure of subsets of Euclidean space as the maximum variation of the distance function on a closed set %J Doklady Akademii Nauk %D 1965 %P 1004-1006 %V 160 %N 5 %U http://geodesic.mathdoc.fr/item/DAN_1965_160_5_a6/ %G ru %F DAN_1965_160_5_a6
B. P. Kufarev; N. G. Nikulina. Lebesgue measure of subsets of Euclidean space as the maximum variation of the distance function on a closed set. Doklady Akademii Nauk, Tome 160 (1965) no. 5, pp. 1004-1006. http://geodesic.mathdoc.fr/item/DAN_1965_160_5_a6/