The continuum as the global cluster set of a convergent sequence of analytic functions
Doklady Akademii Nauk, Tome 153 (1963) no. 5, pp. 999-1000.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1963_153_5_a2,
     author = {B. P. Kufarev and S. V. Soboleva},
     title = {The continuum as the global cluster set of a convergent sequence of analytic functions},
     journal = {Doklady Akademii Nauk},
     pages = {999--1000},
     publisher = {mathdoc},
     volume = {153},
     number = {5},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1963_153_5_a2/}
}
TY  - JOUR
AU  - B. P. Kufarev
AU  - S. V. Soboleva
TI  - The continuum as the global cluster set of a convergent sequence of analytic functions
JO  - Doklady Akademii Nauk
PY  - 1963
SP  - 999
EP  - 1000
VL  - 153
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1963_153_5_a2/
LA  - ru
ID  - DAN_1963_153_5_a2
ER  - 
%0 Journal Article
%A B. P. Kufarev
%A S. V. Soboleva
%T The continuum as the global cluster set of a convergent sequence of analytic functions
%J Doklady Akademii Nauk
%D 1963
%P 999-1000
%V 153
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1963_153_5_a2/
%G ru
%F DAN_1963_153_5_a2
B. P. Kufarev; S. V. Soboleva. The continuum as the global cluster set of a convergent sequence of analytic functions. Doklady Akademii Nauk, Tome 153 (1963) no. 5, pp. 999-1000. http://geodesic.mathdoc.fr/item/DAN_1963_153_5_a2/