Symmetry of border ornaments in a space of $(n+1)$-dimensions
Doklady Akademii Nauk, Tome 147 (1962) no. 5, pp. 1038-1041.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1962_147_5_a13,
     author = {Roman Tiberu},
     title = {Symmetry of border ornaments in a space of $(n+1)$-dimensions},
     journal = {Doklady Akademii Nauk},
     pages = {1038--1041},
     publisher = {mathdoc},
     volume = {147},
     number = {5},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1962_147_5_a13/}
}
TY  - JOUR
AU  - Roman Tiberu
TI  - Symmetry of border ornaments in a space of $(n+1)$-dimensions
JO  - Doklady Akademii Nauk
PY  - 1962
SP  - 1038
EP  - 1041
VL  - 147
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1962_147_5_a13/
LA  - ru
ID  - DAN_1962_147_5_a13
ER  - 
%0 Journal Article
%A Roman Tiberu
%T Symmetry of border ornaments in a space of $(n+1)$-dimensions
%J Doklady Akademii Nauk
%D 1962
%P 1038-1041
%V 147
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1962_147_5_a13/
%G ru
%F DAN_1962_147_5_a13
Roman Tiberu. Symmetry of border ornaments in a space of $(n+1)$-dimensions. Doklady Akademii Nauk, Tome 147 (1962) no. 5, pp. 1038-1041. http://geodesic.mathdoc.fr/item/DAN_1962_147_5_a13/