Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables. II
Doklady Akademii Nauk, Tome 141 (1961) no. 6, pp. 1294-1297
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1961_141_6_a3,
author = {D. V. Ionescu},
title = {Representation as a double integral of the divided difference of order $(m,n)$ of a function of two {variables.~II}},
journal = {Doklady Akademii Nauk},
pages = {1294--1297},
year = {1961},
volume = {141},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/}
}
TY - JOUR AU - D. V. Ionescu TI - Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables. II JO - Doklady Akademii Nauk PY - 1961 SP - 1294 EP - 1297 VL - 141 IS - 6 UR - http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/ LA - ru ID - DAN_1961_141_6_a3 ER -
D. V. Ionescu. Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables. II. Doklady Akademii Nauk, Tome 141 (1961) no. 6, pp. 1294-1297. http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/