Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables.~II
Doklady Akademii Nauk, Tome 141 (1961) no. 6, pp. 1294-1297.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1961_141_6_a3,
     author = {D. V. Ionescu},
     title = {Representation as a double integral of the divided difference of order $(m,n)$  of a function of two {variables.~II}},
     journal = {Doklady Akademii Nauk},
     pages = {1294--1297},
     publisher = {mathdoc},
     volume = {141},
     number = {6},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/}
}
TY  - JOUR
AU  - D. V. Ionescu
TI  - Representation as a double integral of the divided difference of order $(m,n)$  of a function of two variables.~II
JO  - Doklady Akademii Nauk
PY  - 1961
SP  - 1294
EP  - 1297
VL  - 141
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/
LA  - ru
ID  - DAN_1961_141_6_a3
ER  - 
%0 Journal Article
%A D. V. Ionescu
%T Representation as a double integral of the divided difference of order $(m,n)$  of a function of two variables.~II
%J Doklady Akademii Nauk
%D 1961
%P 1294-1297
%V 141
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/
%G ru
%F DAN_1961_141_6_a3
D. V. Ionescu. Representation as a double integral of the divided difference of order $(m,n)$  of a function of two variables.~II. Doklady Akademii Nauk, Tome 141 (1961) no. 6, pp. 1294-1297. http://geodesic.mathdoc.fr/item/DAN_1961_141_6_a3/