Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables.~I
Doklady Akademii Nauk, Tome 141 (1961) no. 5, pp. 1026-1029
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1961_141_5_a5,
author = {D. V. Ionescu},
title = {Representation as a double integral of the divided difference of order $(m,n)$ of a function of two {variables.~I}},
journal = {Doklady Akademii Nauk},
pages = {1026--1029},
publisher = {mathdoc},
volume = {141},
number = {5},
year = {1961},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1961_141_5_a5/}
}
TY - JOUR AU - D. V. Ionescu TI - Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables.~I JO - Doklady Akademii Nauk PY - 1961 SP - 1026 EP - 1029 VL - 141 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1961_141_5_a5/ LA - ru ID - DAN_1961_141_5_a5 ER -
%0 Journal Article %A D. V. Ionescu %T Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables.~I %J Doklady Akademii Nauk %D 1961 %P 1026-1029 %V 141 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1961_141_5_a5/ %G ru %F DAN_1961_141_5_a5
D. V. Ionescu. Representation as a double integral of the divided difference of order $(m,n)$ of a function of two variables.~I. Doklady Akademii Nauk, Tome 141 (1961) no. 5, pp. 1026-1029. http://geodesic.mathdoc.fr/item/DAN_1961_141_5_a5/