Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables
Doklady Akademii Nauk, Tome 139 (1961) no. 5, pp. 1075-1076.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1961_139_5_a11,
     author = {Yu. L. Sagalovich},
     title = {Proof that a minimum number of contacts are required in the realization of a class of {Boolean} functions of $n$~variables},
     journal = {Doklady Akademii Nauk},
     pages = {1075--1076},
     publisher = {mathdoc},
     volume = {139},
     number = {5},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/}
}
TY  - JOUR
AU  - Yu. L. Sagalovich
TI  - Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables
JO  - Doklady Akademii Nauk
PY  - 1961
SP  - 1075
EP  - 1076
VL  - 139
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/
LA  - ru
ID  - DAN_1961_139_5_a11
ER  - 
%0 Journal Article
%A Yu. L. Sagalovich
%T Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables
%J Doklady Akademii Nauk
%D 1961
%P 1075-1076
%V 139
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/
%G ru
%F DAN_1961_139_5_a11
Yu. L. Sagalovich. Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables. Doklady Akademii Nauk, Tome 139 (1961) no. 5, pp. 1075-1076. http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/