Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1961_139_5_a11, author = {Yu. L. Sagalovich}, title = {Proof that a minimum number of contacts are required in the realization of a class of {Boolean} functions of $n$~variables}, journal = {Doklady Akademii Nauk}, pages = {1075--1076}, publisher = {mathdoc}, volume = {139}, number = {5}, year = {1961}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/} }
TY - JOUR AU - Yu. L. Sagalovich TI - Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables JO - Doklady Akademii Nauk PY - 1961 SP - 1075 EP - 1076 VL - 139 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/ LA - ru ID - DAN_1961_139_5_a11 ER -
%0 Journal Article %A Yu. L. Sagalovich %T Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables %J Doklady Akademii Nauk %D 1961 %P 1075-1076 %V 139 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/ %G ru %F DAN_1961_139_5_a11
Yu. L. Sagalovich. Proof that a minimum number of contacts are required in the realization of a class of Boolean functions of $n$~variables. Doklady Akademii Nauk, Tome 139 (1961) no. 5, pp. 1075-1076. http://geodesic.mathdoc.fr/item/DAN_1961_139_5_a11/