Representation of the equation $f_1+f_2+f_3+f_4+f_5+f_6=0$ by a nomogram with an oriented transparent ruler
Doklady Akademii Nauk, Tome 138 (1961) no. 4, pp. 793-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1961_138_4_a13,
     author = {G. S. Khovanskii},
     title = {Representation of the equation $f_1+f_2+f_3+f_4+f_5+f_6=0$ by a nomogram with an oriented transparent ruler},
     journal = {Doklady Akademii Nauk},
     pages = {793--795},
     publisher = {mathdoc},
     volume = {138},
     number = {4},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1961_138_4_a13/}
}
TY  - JOUR
AU  - G. S. Khovanskii
TI  - Representation of the equation $f_1+f_2+f_3+f_4+f_5+f_6=0$ by a nomogram with an oriented transparent ruler
JO  - Doklady Akademii Nauk
PY  - 1961
SP  - 793
EP  - 795
VL  - 138
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1961_138_4_a13/
LA  - ru
ID  - DAN_1961_138_4_a13
ER  - 
%0 Journal Article
%A G. S. Khovanskii
%T Representation of the equation $f_1+f_2+f_3+f_4+f_5+f_6=0$ by a nomogram with an oriented transparent ruler
%J Doklady Akademii Nauk
%D 1961
%P 793-795
%V 138
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1961_138_4_a13/
%G ru
%F DAN_1961_138_4_a13
G. S. Khovanskii. Representation of the equation $f_1+f_2+f_3+f_4+f_5+f_6=0$ by a nomogram with an oriented transparent ruler. Doklady Akademii Nauk, Tome 138 (1961) no. 4, pp. 793-795. http://geodesic.mathdoc.fr/item/DAN_1961_138_4_a13/