The number of $k$-twin primes lying on an interval of a given length
Doklady Akademii Nauk, Tome 136 (1961) no. 2, pp. 281-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1961_136_2_a5,
     author = {A. F. Lavrik},
     title = {The number of $k$-twin primes lying on an interval of a given length},
     journal = {Doklady Akademii Nauk},
     pages = {281--283},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {1961},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1961_136_2_a5/}
}
TY  - JOUR
AU  - A. F. Lavrik
TI  - The number of $k$-twin primes lying on an interval of a given length
JO  - Doklady Akademii Nauk
PY  - 1961
SP  - 281
EP  - 283
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1961_136_2_a5/
LA  - ru
ID  - DAN_1961_136_2_a5
ER  - 
%0 Journal Article
%A A. F. Lavrik
%T The number of $k$-twin primes lying on an interval of a given length
%J Doklady Akademii Nauk
%D 1961
%P 281-283
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1961_136_2_a5/
%G ru
%F DAN_1961_136_2_a5
A. F. Lavrik. The number of $k$-twin primes lying on an interval of a given length. Doklady Akademii Nauk, Tome 136 (1961) no. 2, pp. 281-283. http://geodesic.mathdoc.fr/item/DAN_1961_136_2_a5/