First order differential equations in Hilbert space with a variable positively defined self-adjoined operator whose fractional power has a constant definition domain
Doklady Akademii Nauk, Tome 123 (1958) no. 6, pp. 984-987.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1958_123_6_a7,
     author = {P. E. Sobolevskii},
     title = {First order differential equations in {Hilbert} space with a variable positively defined self-adjoined operator whose fractional power has a constant definition domain},
     journal = {Doklady Akademii Nauk},
     pages = {984--987},
     publisher = {mathdoc},
     volume = {123},
     number = {6},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1958_123_6_a7/}
}
TY  - JOUR
AU  - P. E. Sobolevskii
TI  - First order differential equations in Hilbert space with a variable positively defined self-adjoined operator whose fractional power has a constant definition domain
JO  - Doklady Akademii Nauk
PY  - 1958
SP  - 984
EP  - 987
VL  - 123
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1958_123_6_a7/
LA  - ru
ID  - DAN_1958_123_6_a7
ER  - 
%0 Journal Article
%A P. E. Sobolevskii
%T First order differential equations in Hilbert space with a variable positively defined self-adjoined operator whose fractional power has a constant definition domain
%J Doklady Akademii Nauk
%D 1958
%P 984-987
%V 123
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1958_123_6_a7/
%G ru
%F DAN_1958_123_6_a7
P. E. Sobolevskii. First order differential equations in Hilbert space with a variable positively defined self-adjoined operator whose fractional power has a constant definition domain. Doklady Akademii Nauk, Tome 123 (1958) no. 6, pp. 984-987. http://geodesic.mathdoc.fr/item/DAN_1958_123_6_a7/