Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1957_113_5_a1, author = {R. G. Barantsev}, title = {A~boundary problem for equation $\psi_{\sigma\sigma}-K(\sigma)\psi_{\theta\theta}=0$ values given on the characteristic and $\sigma=\operatorname{const}$ lines}, journal = {Doklady Akademii Nauk}, pages = {955--958}, publisher = {mathdoc}, volume = {113}, number = {5}, year = {1957}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1957_113_5_a1/} }
TY - JOUR AU - R. G. Barantsev TI - A~boundary problem for equation $\psi_{\sigma\sigma}-K(\sigma)\psi_{\theta\theta}=0$ values given on the characteristic and $\sigma=\operatorname{const}$ lines JO - Doklady Akademii Nauk PY - 1957 SP - 955 EP - 958 VL - 113 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1957_113_5_a1/ LA - ru ID - DAN_1957_113_5_a1 ER -
%0 Journal Article %A R. G. Barantsev %T A~boundary problem for equation $\psi_{\sigma\sigma}-K(\sigma)\psi_{\theta\theta}=0$ values given on the characteristic and $\sigma=\operatorname{const}$ lines %J Doklady Akademii Nauk %D 1957 %P 955-958 %V 113 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1957_113_5_a1/ %G ru %F DAN_1957_113_5_a1
R. G. Barantsev. A~boundary problem for equation $\psi_{\sigma\sigma}-K(\sigma)\psi_{\theta\theta}=0$ values given on the characteristic and $\sigma=\operatorname{const}$ lines. Doklady Akademii Nauk, Tome 113 (1957) no. 5, pp. 955-958. http://geodesic.mathdoc.fr/item/DAN_1957_113_5_a1/