Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1957_113_4_a6, author = {E. M. Landis and I. G. Petrovskii}, title = {On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which~$P$ and~$Q$}, journal = {Doklady Akademii Nauk}, pages = {748--751}, publisher = {mathdoc}, volume = {113}, number = {4}, year = {1957}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1957_113_4_a6/} }
TY - JOUR AU - E. M. Landis AU - I. G. Petrovskii TI - On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which~$P$ and~$Q$ JO - Doklady Akademii Nauk PY - 1957 SP - 748 EP - 751 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1957_113_4_a6/ LA - ru ID - DAN_1957_113_4_a6 ER -
%0 Journal Article %A E. M. Landis %A I. G. Petrovskii %T On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which~$P$ and~$Q$ %J Doklady Akademii Nauk %D 1957 %P 748-751 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1957_113_4_a6/ %G ru %F DAN_1957_113_4_a6
E. M. Landis; I. G. Petrovskii. On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which~$P$ and~$Q$. Doklady Akademii Nauk, Tome 113 (1957) no. 4, pp. 748-751. http://geodesic.mathdoc.fr/item/DAN_1957_113_4_a6/