Dependence of the dynamics of a model of coupled oscillators on the number of oscillators
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the nonlocal dynamics of a model describing $N$ coupled oscillators with delay. Studying the asymptotics of solutions of the original system is reduced to studying the dynamics of a simpler mapping. It is shown that, for positive values of the coupling parameter in the considered model, the oscillators are synchronized. For negative values of the coupling parameter, the asymptotics of the solutions of the system depends significantly on the parity of the number $N$: for even $N$, two-cluster synchronization is observed, and, for odd $N$, the dynamics of the model is more complicated.
Keywords: nonlocal dynamics, delay, asymptotics.
@article{DANMA_2021_501_a8,
     author = {A. A. Kashchenko},
     title = {Dependence of the dynamics of a model of coupled oscillators on the number of oscillators},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a8/}
}
TY  - JOUR
AU  - A. A. Kashchenko
TI  - Dependence of the dynamics of a model of coupled oscillators on the number of oscillators
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 46
EP  - 51
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a8/
LA  - ru
ID  - DANMA_2021_501_a8
ER  - 
%0 Journal Article
%A A. A. Kashchenko
%T Dependence of the dynamics of a model of coupled oscillators on the number of oscillators
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 46-51
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a8/
%G ru
%F DANMA_2021_501_a8
A. A. Kashchenko. Dependence of the dynamics of a model of coupled oscillators on the number of oscillators. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 46-51. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a8/

[1] Kilias T., Kelber K., Mogel A., Schwarz W., “Electronic chaos generators - design and applications”, International journal of electronics, 79:6 (1995), 737–753 | DOI

[2] an der Heiden U., Mackey M.C., “The dynamics of production and destruction: analytic insight into complex behavior”, Journal of Mathematical Biology, 16:1 (1982), 75–101 | DOI | MR | Zbl

[3] Erneux T., Applied delay differential equations, Springer Science Business Media, 2009 | MR | Zbl

[4] Lakshmanan M., Senthilkumar D.V., Dynamics of nonlinear time-delay systems, Springer Science Business Media, 2011 | MR

[5] Krisztin T., Walther H.O., “Unique periodic orbits for delayed positive feedback and the global attractor”, Journal of Dynamics and Differential Equations, 13:1 (2001), 1–57 | DOI | MR | Zbl

[6] Stoffer D., “Delay equations with rapidly oscillating stable periodic solutions”, Journal of Dynamics and Differential Equations, 20:1 (2008), 201–238 | DOI | MR | Zbl

[7] Krisztin T., Vas G., “Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback”, Journal of dynamics and differential equations, 23:4 (2011), 727–790 | DOI | MR | Zbl

[8] Kaschenko A.A., “Relaksatsionnye tsikly v modeli dvukh slabo svyazannykh ostsillyatorov so znakoperemennoi zapazdyvayuschei obratnoi svyazyu”, Teoreticheskaya i matematicheskaya fizika, 202:3 (2020), 437–446 | DOI | MR

[9] Kashchenko A.A., “Dependence of Dynamics of a System of Two Coupled Generators with Delayed Feedback on the Sign of Coupling”, Mathematics, 8:10 (2020), 1790 | DOI

[10] Kashchenko A.A., “Relaxation modes of a system of diffusion coupled oscillators with delay”, Communications in Nonlinear Science and Numerical Simulation, 93 (2021), 105488 | DOI | MR | Zbl

[11] Kaschenko S.A., Maiorov V.V., Modeli volnovoi pamyati, Kn. dom “Librokom”, M., 2009