Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a7, author = {A. P. Ivanov}, title = {Proof of stability in the {Brower--Paul} problem}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {42--45}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/} }
TY - JOUR AU - A. P. Ivanov TI - Proof of stability in the Brower--Paul problem JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 42 EP - 45 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/ LA - ru ID - DANMA_2021_501_a7 ER -
A. P. Ivanov. Proof of stability in the Brower--Paul problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 42-45. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/
[1] Brouwer L.E.J., “The motion of a particle on the bottom of a rotating vessel under the influence of the gravitational force”, Collected Works, v. II, ed. H. Freudenthal, North-Holland, Amsterdam, 1975, 665–686 | MR
[2] Bottema O., “Stability of equilibrium of a heavy particle on a rotating surface”, ZAMP Z. angew. Math. Phys., 27 (1976), 663–669 | DOI | MR | Zbl
[3] Paul V., “Elektromagnitnye lovushki dlya zaryazhennykh i neitralnykh chastits”, UFN, 160:12 (1990) | Zbl
[4] Arnol'd V.I., Mathematical Methods of Classical Mechanics, Springer, 1978 | MR | Zbl
[5] Markeev A.P., “Stability of a canonical system with two degrees of freedom in the presence of resonance”, Appl. Math. Mech., 32 (1969), 766–772 | DOI | MR