Proof of stability in the Brower--Paul problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 42-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stability of equilibrium in the problem known as “a ball on a rotating saddle”, which was first considered by the famous Dutch mathematician Brauer in 1918. He showed that, in the case of a smooth surface, the saddle point, unstable in the absence of rotation, can be stabilized in a certain range of angular velocities. Later, this system was considered by Bottema from a standpoint of bifurcation theory. The physical analogue of this problem is the Nobel Laureate Paul’s ion trap: here, the rotating solid support is replaced by a quadrupole with a periodically changing voltage and gravity is replaced by an electrostatic field. The stability conditions were obtained in a linear approximation, and their sufficiency has not yet been proven. In this paper, such a proof is carried out by methods of Hamiltonian mechanics.
Keywords: ball on a rotating saddle, stability, KAM theory.
@article{DANMA_2021_501_a7,
     author = {A. P. Ivanov},
     title = {Proof of stability in the {Brower--Paul} problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {42--45},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/}
}
TY  - JOUR
AU  - A. P. Ivanov
TI  - Proof of stability in the Brower--Paul problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 42
EP  - 45
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/
LA  - ru
ID  - DANMA_2021_501_a7
ER  - 
%0 Journal Article
%A A. P. Ivanov
%T Proof of stability in the Brower--Paul problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 42-45
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/
%G ru
%F DANMA_2021_501_a7
A. P. Ivanov. Proof of stability in the Brower--Paul problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 42-45. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a7/

[1] Brouwer L.E.J., “The motion of a particle on the bottom of a rotating vessel under the influence of the gravitational force”, Collected Works, v. II, ed. H. Freudenthal, North-Holland, Amsterdam, 1975, 665–686 | MR

[2] Bottema O., “Stability of equilibrium of a heavy particle on a rotating surface”, ZAMP Z. angew. Math. Phys., 27 (1976), 663–669 | DOI | MR | Zbl

[3] Paul V., “Elektromagnitnye lovushki dlya zaryazhennykh i neitralnykh chastits”, UFN, 160:12 (1990) | Zbl

[4] Arnol'd V.I., Mathematical Methods of Classical Mechanics, Springer, 1978 | MR | Zbl

[5] Markeev A.P., “Stability of a canonical system with two degrees of freedom in the presence of resonance”, Appl. Math. Mech., 32 (1969), 766–772 | DOI | MR