Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a6, author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev}, title = {On a family of complex-valued stochastic processes}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {38--41}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a6/} }
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - On a family of complex-valued stochastic processes JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 38 EP - 41 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a6/ LA - ru ID - DANMA_2021_501_a6 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T On a family of complex-valued stochastic processes %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 38-41 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a6/ %G ru %F DANMA_2021_501_a6
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a family of complex-valued stochastic processes. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 38-41. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a6/
[1] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[2] Agranovich M.S., Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013, 378 pp.
[3] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg–Moskva–Krasnodar, 2010
[4] Borodin A.N., Ibragimov I.A., “Predelnye teoremy dlya funktsionalov ot sluchainykh bluzhdanii”, Tr. MIAN SSSR, 195, 1994, 3–286
[5] Berman S., “Gaussian processes with stationary increments: local times and sample function properties”, Ann. Math. Stat., 41:4 (1970), 1260–1272 | DOI | MR | Zbl
[6] Berman S., “Local times and sample function properties of stationary Gaussian process”, Trans. Amer. Math. Soc., 137 (1969), 277–299 | DOI | MR | Zbl