Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture, we give an entropy balance equation with a nonnegative entropy production in the presence of diffusion fluxes. We also derive the existence, uniqueness, and $L^2$-dissipativity of weak solutions to an initial-boundary value problem for the system linearized at a constant solution. Additionally, the Petrovskii parabolicity and local-in-time classical unique solvability of the Cauchy problem for the quasi-gasdynamic system itself are established.
Keywords: quasi-gasdynamic system of equations, homogeneous gas mixture, entropy balance equation, Petrovskii parabolicity, $L^2$-dissipativity.
@article{DANMA_2021_501_a5,
     author = {A. A. Zlotnik and A. S. Fedchenko},
     title = {Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a5/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - A. S. Fedchenko
TI  - Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 31
EP  - 37
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a5/
LA  - ru
ID  - DANMA_2021_501_a5
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A A. S. Fedchenko
%T Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 31-37
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a5/
%G ru
%F DANMA_2021_501_a5
A. A. Zlotnik; A. S. Fedchenko. Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 31-37. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a5/

[1] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Izd. 3-e, Nauka, M., 1986

[2] Nigmatulin R.I., Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987

[3] Giovangigli V., Multicomponent flow modeling, Birkhäuser, Boston, 1999 | MR | Zbl

[4] Chetverushkin B.N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[5] Elizarova T.G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[6] Sheretov Yu.V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, Regulyarnaya i khaoticheskaya dinamika, Moskva-Izhevsk, 2009

[7] Zlotnik A.A., Chetverushkin B.N., ZhVMiMF, 48:3 (2008), 445–472 | MR | Zbl

[8] Zlotnik A.A., DAN, 431:5 (2010), 605–609 | Zbl

[9] Elizarova T.G., Zlotnik A.A., Chetverushkin B.N., DAN, 459:4 (2014), 395–399 | Zbl

[10] Elizarova T.G., Zlotnik A.A., Shilnikov E.V., ZhVMiMF, 59:11 (2019), 1899–1914 | Zbl

[11] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[12] Petrovskii I.G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986

[13] Eidelman S.D., Parabolicheskie sistemy, Nauka, M., 1964 | MR