Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tensor invariants (differential forms) for homogeneous dynamical systems on tangent bundles of smooth two-dimensional manifolds are presented. The connection between the presence of these invariants and the full set of first integrals necessary for the integration of geodesic, potential, and dissipative systems is shown. The force fields introduced into the considered systems make them dissipative with dissipation of different signs and generalize previously considered force fields.
Keywords: dynamical system, integrability, dissipation, transcendental first integral, invariant differential form.
@article{DANMA_2021_501_a16,
     author = {M. V. Shamolin},
     title = {Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 89
EP  - 94
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/
LA  - ru
ID  - DANMA_2021_501_a16
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 89-94
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/
%G ru
%F DANMA_2021_501_a16
M. V. Shamolin. Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 89-94. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/

[1] Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912, 340 pp. | MR

[2] Kolmogorov A.N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, DAN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[3] Kozlov V.V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Uspekhi matem. nauk, 74:1 (2019), 117–148 | DOI | MR | Zbl

[4] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[5] Shamolin M.V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 105–111 | DOI | Zbl

[6] Shamolin M.V., “Novye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiei”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 491:1 (2020), 95–101 | DOI | Zbl

[7] Shamolin M.V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Doklady RAN, 442:4 (2012), 479–481 | MR

[8] Kozlov V.V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. matem. i mekhan., 79:3 (2015), 307–316 | Zbl

[9] Klein F., Neevklidova geometriya, Per. s nem., Izd. 4, ispr., obnovl., URSS, M., 2017, 352 pp.

[10] Veil G., Simmetriya, URSS, M., 2007

[11] Kozlov V.V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:1 (1983), 3–67 | MR | Zbl

[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976

[13] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR

[14] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. i prikl. matem., 16:4 (2010), 3–229

[15] Trofimov V.V., “Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1984, no. 6, 31–33 | Zbl

[16] Trofimov V.V., Fomenko A.T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, DAN SSSR, 254:6 (1980), 1349–1353 | MR