Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a16, author = {M. V. Shamolin}, title = {Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {89--94}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/} }
TY - JOUR AU - M. V. Shamolin TI - Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 89 EP - 94 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/ LA - ru ID - DANMA_2021_501_a16 ER -
%0 Journal Article %A M. V. Shamolin %T Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 89-94 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/ %G ru %F DANMA_2021_501_a16
M. V. Shamolin. Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 89-94. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a16/
[1] Poincaré H., Calcul des probabilités, Gauthier-Villars, Paris, 1912, 340 pp. | MR
[2] Kolmogorov A.N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, DAN SSSR, 93:5 (1953), 763–766 | MR | Zbl
[3] Kozlov V.V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Uspekhi matem. nauk, 74:1 (2019), 117–148 | DOI | MR | Zbl
[4] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl
[5] Shamolin M.V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 105–111 | DOI | Zbl
[6] Shamolin M.V., “Novye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiei”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 491:1 (2020), 95–101 | DOI | Zbl
[7] Shamolin M.V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Doklady RAN, 442:4 (2012), 479–481 | MR
[8] Kozlov V.V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. matem. i mekhan., 79:3 (2015), 307–316 | Zbl
[9] Klein F., Neevklidova geometriya, Per. s nem., Izd. 4, ispr., obnovl., URSS, M., 2017, 352 pp.
[10] Veil G., Simmetriya, URSS, M., 2007
[11] Kozlov V.V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:1 (1983), 3–67 | MR | Zbl
[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976
[13] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR
[14] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. i prikl. matem., 16:4 (2010), 3–229
[15] Trofimov V.V., “Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1984, no. 6, 31–33 | Zbl
[16] Trofimov V.V., Fomenko A.T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, DAN SSSR, 254:6 (1980), 1349–1353 | MR