Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed for constructing a CABARET scheme that approximates a hyperbolic system of conservation laws that cannot be written in the form of invariants. This technique is based on the method of quasi-invariants and additional flux correction, which ensures monotonization of the difference solution in calculating discontinuous solutions with shock waves and contact discontinuities. As an example, a system of conservation laws for nonisentropic gas dynamics with a polytropic equation of state is considered. Test calculations of the Blast Wave initial-boundary value problem showed that the proposed scheme suppresses nonphysical oscillations leading to the instability of the difference solution in the case when the CABARET scheme is used without additional flux correction.
Keywords: quasi-invariants method, CABARET scheme, equations of gas dynamics, Blast Wave problem.
@article{DANMA_2021_501_a11,
     author = {V. V. Ostapenko and V. A. Kolotilov},
     title = {Application of the {CABARET} scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {62--66},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/}
}
TY  - JOUR
AU  - V. V. Ostapenko
AU  - V. A. Kolotilov
TI  - Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 62
EP  - 66
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/
LA  - ru
ID  - DANMA_2021_501_a11
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%A V. A. Kolotilov
%T Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 62-66
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/
%G ru
%F DANMA_2021_501_a11
V. V. Ostapenko; V. A. Kolotilov. Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 62-66. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/

[1] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[2] Goloviznin V.M., Zaitsev M.A., Karabasov S.A., Korotkin I.A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izd-vo Mosk. un-ta, M., 2013

[3] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei giperbolicheskoe uravnenie so znakoperemennym kharakteristicheskim polem”, ZhVMiMF, 56:5 (2016), 796–815 | MR | Zbl

[4] Zyuzina N.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei skalyarnyi zakon sokhraneniya s vypuklym potokom”, DAN, 466:5 (2016), 513–517 | MR | Zbl

[5] Ostapenko V.V., Cherevko A.A., “Primenenie skhemy KABARE dlya rascheta razryvnykh reshenii skalyarnogo zakona sokhraneniya s nevypuklym potokom”, DAN, 476:5 (2017), 518–522 | MR

[6] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei giperbolicheskuyu sistemu zakonov sokhraneniya”, ZhVMiMF, 58:9 (2018), 1488–1504 | MR

[7] Gologush T.S., Cherevko A.A., Ostapenko V.V., “Comparison of the WENO and CABARET schemes at calculation of the scalar conservation law with a nonconvex flux”, AIP Conf. Proc., 2293:1 (2020), 370006 | DOI

[8] Jiang G.S., Shu C.W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[9] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54 (1984), 115–173 | DOI | MR | Zbl