Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a11, author = {V. V. Ostapenko and V. A. Kolotilov}, title = {Application of the {CABARET} scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {62--66}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/} }
TY - JOUR AU - V. V. Ostapenko AU - V. A. Kolotilov TI - Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 62 EP - 66 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/ LA - ru ID - DANMA_2021_501_a11 ER -
%0 Journal Article %A V. V. Ostapenko %A V. A. Kolotilov %T Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 62-66 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/ %G ru %F DANMA_2021_501_a11
V. V. Ostapenko; V. A. Kolotilov. Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 62-66. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a11/
[1] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[2] Goloviznin V.M., Zaitsev M.A., Karabasov S.A., Korotkin I.A., Novye algoritmy vychislitelnoi gidrodinamiki dlya mnogoprotsessornykh vychislitelnykh kompleksov, Izd-vo Mosk. un-ta, M., 2013
[3] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei giperbolicheskoe uravnenie so znakoperemennym kharakteristicheskim polem”, ZhVMiMF, 56:5 (2016), 796–815 | MR | Zbl
[4] Zyuzina N.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei skalyarnyi zakon sokhraneniya s vypuklym potokom”, DAN, 466:5 (2016), 513–517 | MR | Zbl
[5] Ostapenko V.V., Cherevko A.A., “Primenenie skhemy KABARE dlya rascheta razryvnykh reshenii skalyarnogo zakona sokhraneniya s nevypuklym potokom”, DAN, 476:5 (2017), 518–522 | MR
[6] Kovyrkina O.A., Ostapenko V.V., “O monotonnosti skhemy KABARE, approksimiruyuschei giperbolicheskuyu sistemu zakonov sokhraneniya”, ZhVMiMF, 58:9 (2018), 1488–1504 | MR
[7] Gologush T.S., Cherevko A.A., Ostapenko V.V., “Comparison of the WENO and CABARET schemes at calculation of the scalar conservation law with a nonconvex flux”, AIP Conf. Proc., 2293:1 (2020), 370006 | DOI
[8] Jiang G.S., Shu C.W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[9] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54 (1984), 115–173 | DOI | MR | Zbl