Mathematical structures related to the description of quantum states
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 57-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some representations of states of quantum systems are discussed, and their equivalence is proved. In particular, an approach going back to L.D. Landau in which the density operator is constructed using a reduction of a pure state of a quantum system described by the tensor product of suitable Hilbert spaces is presented. Under these assumptions, changes in the states of subsystems of a quantum system caused by experiments are investigated.
Keywords: pure state, density operator, tensor product, reduction of states, Bell vector.
@article{DANMA_2021_501_a10,
     author = {V. V. Kozlov and O. G. Smolyanov},
     title = {Mathematical structures related to the description of quantum states},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {57--61},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - O. G. Smolyanov
TI  - Mathematical structures related to the description of quantum states
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 57
EP  - 61
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a10/
LA  - ru
ID  - DANMA_2021_501_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A O. G. Smolyanov
%T Mathematical structures related to the description of quantum states
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 57-61
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a10/
%G ru
%F DANMA_2021_501_a10
V. V. Kozlov; O. G. Smolyanov. Mathematical structures related to the description of quantum states. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 57-61. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a10/

[1] A. Puankare, P. Erenfest, T. Erenfest, Dzh. fon Neiman, Raboty po statisticheskoi mekhanike, S dop. i pod red. V.V. Kozlova i O.G. Smolyanova, IKI. Biblioteka zhurnala ratsionalnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011

[2] A. M. Gleason, “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 1957, no. 6, 885–893 | MR | Zbl

[3] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[4] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika i nerelyativistskaya teoriya, Gos. Izd. fiz. mat. lit-ry, M.., 1963 | MR

[5] O. G. Smolyanov, A. Trumen, “Veroyatnostnye modeli kvantovykh sistem i neravenstva tipa Bella”, DAN, 387:1 (2002), 31–36 | MR | Zbl

[6] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, Institut kompyuternykh issledovanii. Biblioteka zhurnala ratsionalnaya i khaoticheskaya dinamika, M.–Izhevsk, 2020 | MR

[7] J. S. Bell, Speakable and Uspeakable in Quantum Mechanics, Cambridge University Press, 1987 | MR

[8] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Berlin–Basel–Boston, 1992 | MR | Zbl