Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we study the stationary Kolmogorov equation and prove that, in the case where the diffusion matrix satisfies Dini’s condition and the drift coefficient is locally integrable to a power greater than the dimension, the ratio of two probability solutions belongs to the Sobolev class, and in the case of existence of a Lyapunov function or the global integrability of the coefficients with respect to the solution a probability solution is unique.
Keywords: Kolmogorov equation, stationary solution, uniqueness of a probability solution.
@article{DANMA_2021_501_a1,
     author = {V. I. Bogachev and S. V. Shaposhnikov},
     title = {Uniqueness of a probability solution to the {Kolmogorov} equation with a diffusion matrix satisfying {Dini{\textquoteright}s} condition},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {11--15},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - S. V. Shaposhnikov
TI  - Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 11
EP  - 15
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/
LA  - ru
ID  - DANMA_2021_501_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A S. V. Shaposhnikov
%T Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 11-15
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/
%G ru
%F DANMA_2021_501_a1
V. I. Bogachev; S. V. Shaposhnikov. Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 11-15. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/

[1] Bogachev V.I., Rekner M., Shtannat V., Matem. sb., 197:7 (2002), 3–36 | DOI

[2] Bogachev V.I., Röckner M., Shaposhnikov S.V., J. Math. Sci. (New York), 176:6 (2011), 759–773 | DOI | MR | Zbl

[3] Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V., Fokker-Planck-Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl

[4] Bogachev V.I., Shaposhnikov S.V., Annali Matem., 196 (2017), 1609–1635 | DOI | Zbl

[5] Dong H., Kim S., Comm. Partial Differ. Equ., 42 (2017), 417–435 | DOI | MR | Zbl

[6] Dong H., Escauriaza L., Kim S., Math. Ann., 370 (2018), 447–489 | DOI | MR | Zbl

[7] Bauman P., Ark. Mat., 22 (1984), 153–173 | DOI | MR | Zbl

[8] Escauriaza L., Montaner S., Rend. Lincei Mat. Appl., 28 (2017), 49–63 | Zbl

[9] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[10] Chiarenza F., Frasca M., Longo P., Trans. Amer. Math. Soc., 336 (1993), 841–853 | MR | Zbl

[11] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR

[12] Krasovitskii T.I., Dokl. RAN, 487:4 (2019), 361–364 | DOI | MR | Zbl