Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 11-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we study the stationary Kolmogorov equation and prove that, in the case where the diffusion matrix satisfies Dini’s condition and the drift coefficient is locally integrable to a power greater than the dimension, the ratio of two probability solutions belongs to the Sobolev class, and in the case of existence of a Lyapunov function or the global integrability of the coefficients with respect to the solution a probability solution is unique.
Keywords: Kolmogorov equation, stationary solution, uniqueness of a probability solution.
@article{DANMA_2021_501_a1,
     author = {V. I. Bogachev and S. V. Shaposhnikov},
     title = {Uniqueness of a probability solution to the {Kolmogorov} equation with a diffusion matrix satisfying {Dini{\textquoteright}s} condition},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {11--15},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - S. V. Shaposhnikov
TI  - Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 11
EP  - 15
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/
LA  - ru
ID  - DANMA_2021_501_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A S. V. Shaposhnikov
%T Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 11-15
%V 501
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/
%G ru
%F DANMA_2021_501_a1
V. I. Bogachev; S. V. Shaposhnikov. Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 11-15. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a1/

[1] Bogachev V.I., Rekner M., Shtannat V., Matem. sb., 197:7 (2002), 3–36 | DOI

[2] Bogachev V.I., Röckner M., Shaposhnikov S.V., J. Math. Sci. (New York), 176:6 (2011), 759–773 | DOI | MR | Zbl

[3] Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V., Fokker-Planck-Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl

[4] Bogachev V.I., Shaposhnikov S.V., Annali Matem., 196 (2017), 1609–1635 | DOI | Zbl

[5] Dong H., Kim S., Comm. Partial Differ. Equ., 42 (2017), 417–435 | DOI | MR | Zbl

[6] Dong H., Escauriaza L., Kim S., Math. Ann., 370 (2018), 447–489 | DOI | MR | Zbl

[7] Bauman P., Ark. Mat., 22 (1984), 153–173 | DOI | MR | Zbl

[8] Escauriaza L., Montaner S., Rend. Lincei Mat. Appl., 28 (2017), 49–63 | Zbl

[9] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[10] Chiarenza F., Frasca M., Longo P., Trans. Amer. Math. Soc., 336 (1993), 841–853 | MR | Zbl

[11] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR

[12] Krasovitskii T.I., Dokl. RAN, 487:4 (2019), 361–364 | DOI | MR | Zbl