Parcourir par
Collections
Sources
Geodesic
Parcourir par
Collections
Sources
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
Tome 501 (2021)
Précédent
Tome 501 (2021)
Sommaire
On stable random variables with a complex stability index
I. A. Alekseev
p. 5-10
Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
V. I. Bogachev
;
S. V. Shaposhnikov
p. 11-15
On the spectrum of a non-self-adjoint quasiperiodic operator
D. I. Borisov
;
A. A. Fedotov
p. 16-21
Local Marchenko–Pastur law for sparse rectangular random matrices
F. Götze
;
D. A. Timushev
;
A. N. Tikhomirov
p. 22-25
On the maximal cut in a random hypergraph
P. A. Zakharov
;
D. A. Shabanov
p. 26-30
Properties of an aggregated quasi-gasdynamic system of equations for a homogeneous gas mixture
A. A. Zlotnik
;
A. S. Fedchenko
p. 31-37
On a family of complex-valued stochastic processes
I. A. Ibragimov
;
N. V. Smorodina
;
M. M. Faddeev
p. 38-41
Proof of stability in the Brower–Paul problem
A. P. Ivanov
p. 42-45
Dependence of the dynamics of a model of coupled oscillators on the number of oscillators
A. A. Kashchenko
p. 46-51
Construction of families of equations to describe irregular solutions in the Fermi–Pasta–Ulam problem
S. A. Kaschenko
p. 52-56
Mathematical structures related to the description of quantum states
V. V. Kozlov
;
O. G. Smolyanov
p. 57-61
Application of the CABARET scheme for calculating discontinuous solutions of a hyperbolic system of conservation laws
V. V. Ostapenko
;
V. A. Kolotilov
p. 62-66
Hybrid grid-characteristic schemes for arctic seismic problems
I. B. Petrov
;
V. I. Golubev
;
E. K. Guseva
p. 67-73
Mathematical modeling of neo-Hookean material growth
P. I. Plotnikov
p. 74-78
Phaseless problem of determination of anisotropic conductivity in electrodynamic equations
V. G. Romanov
p. 79-83
Quotients of Severi–Brauer surfaces
A. S. Trepalin
p. 84-88
Tensor invariants of geodesic, potential, and dissipative systems on tangent bundles of two-dimensional manifolds
M. V. Shamolin
p. 89-94
Trajectory of an observer tracking the motion of an object around a convex set in
$\mathbb{R}^3$
V. I. Berdyshev
p. 95-97