On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 45-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of describing square-free polynomials $f(x)\in k[x]$ with a periodic expansion of $\sqrt{f(x)}$ into a functional continued fraction in $k((x))$, where $k$ is a number field and the degree of the corresponding fundamental $S$-unit of the hyperelliptic field $k(x)(\sqrt{f(x)})$ is less than or equal to 11.
Keywords: hyperelliptic field, $S$-units, continued fractions, periodicity, torsion points.
@article{DANMA_2021_500_a8,
     author = {V. P. Platonov and M. M. Petrunin and Yu. N. Shteinikov},
     title = {On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {45--51},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
AU  - Yu. N. Shteinikov
TI  - On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 45
EP  - 51
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/
LA  - ru
ID  - DANMA_2021_500_a8
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%A Yu. N. Shteinikov
%T On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 45-51
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/
%G ru
%F DANMA_2021_500_a8
V. P. Platonov; M. M. Petrunin; Yu. N. Shteinikov. On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 45-51. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/

[1] Abel N.H., “Ueber die integration der differential-formel $\rho dx{\text{/}}\sqrt R $ wenn $r$ und $\rho$ ganze functionen sind”, Journal für die reine und angewandte Mathematik, 1 (1826), 185–221 | MR

[2] Tchebicheff P., “Sur l'intégration des différentielles qui contiennent une racine carrée d'un polynome du troisieme ou du quatrieme degré”, Journal des math. pures et appl., 2 (1857), 168–192

[3] Platonov V.P., “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1(415) (2014), 3–38 | DOI | MR | Zbl

[4] Wolfgang M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta arithmetica, 95:2 (2000), 139–166 | DOI | MR | Zbl

[5] Platonov V.P., Fedorov G.V., “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR | Zbl

[6] Platonov V.P., Petrunin M.M., Zhgun V.S., “O probleme periodichnosti razlozhenii v nepreryvnuyu drob $\sqrt f $ dlya kubicheskikh mnogochlenov nad chislovymi polyami”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 493:1 (2020), 32–37 | DOI | Zbl

[7] Platonov V.P., Petrunin M.M., “O konechnosti chisla periodicheskikh razlozhenii v nepreryvnuyu drob $\sqrt f $ dlya kubicheskikh mnogochlenov nad polyami algebraicheskikh chisel”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 495:1 (2020), 48–54 | DOI | Zbl

[8] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, Uspekhi matematicheskikh nauk, 75:4(454) (2020), 211–212 | DOI | MR | Zbl

[9] Kubert D.S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc., 33:2 (1976), 193–237 | DOI | MR | Zbl

[10] Sutherland A., “Constructing elliptic curves over finite fields with prescribed torsion”, Mathematics of Computation, 81:278 (2012), 1131–1147 | DOI | MR | Zbl

[11] Platonov V.P., Petrunin M.M., Zhgun V.S. i dr., “O konechnosti giperellipticheskikh polei so spetsialnymi svoistvami i periodicheskim razlozheniem $\sqrt f $”, Doklady RAN, 483:6 (2018), 609–613 | DOI

[12] Platonov V.P., Petrunin M.M., “Gruppy $S$-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Trudy MIAN, 302, 2018, 354–376 | DOI | Zbl

[13] Petrunin M.M., “$S$-edinitsy i periodichnost kvadratnogo kornya v giperellipticheskikh polyakh”, Doklady RAN, 474:2 (2017), 155–158 | DOI | Zbl

[14] Platonov V.P., Petrunin M.M., Shteinikov Yu.N., “O konechnosti chisla ellipticheskikh polei s zadannymi stepenyami $S$-edinits i periodicheskim razlozheniem $\sqrt f $”, Doklady RAN, 488:3 (2019), 9–14 | DOI