Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a8, author = {V. P. Platonov and M. M. Petrunin and Yu. N. Shteinikov}, title = {On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {45--51}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/} }
TY - JOUR AU - V. P. Platonov AU - M. M. Petrunin AU - Yu. N. Shteinikov TI - On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11 JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 45 EP - 51 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/ LA - ru ID - DANMA_2021_500_a8 ER -
%0 Journal Article %A V. P. Platonov %A M. M. Petrunin %A Yu. N. Shteinikov %T On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11 %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 45-51 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/ %G ru %F DANMA_2021_500_a8
V. P. Platonov; M. M. Petrunin; Yu. N. Shteinikov. On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 45-51. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a8/